A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system.
نویسندگان
چکیده
As pollen tubes grow toward the ovary, they are in constant contact with the pistil extracellular matrix (ECM). ECM components are taken up during growth, and some pistil molecules exert their effect inside the pollen tube. For instance, the Nicotiana alata 120-kD glycoprotein (120K) is an abundant arabinogalactan protein that is taken up from the ECM; it has been detected in association with pollen tube vacuoles, but the transport pathway between these compartments is unknown. We recently identified a pollen C2 domain-containing protein (NaPCCP) that binds to the carboxyl-terminal domain of 120K. As C2 domain proteins mediate protein-lipid interactions, NaPCCP could function in intracellular transport of 120K in pollen tubes. Here, we describe binding studies showing that the NaPCCP C2 domain is functional and that binding is specific for phosphatidylinositol 3-phosphate. Subcellular fractionation, immunolocalization, and live imaging results show that NaPCCP is associated with the plasma membrane and internal pollen tube vesicles. Colocalization between an NaPCCPgreen fluorescent protein fusion and internalized FM4-64 suggest an association with the endosomal system. NaPCCP localization is altered in pollen tubes rejected by the self-incompatibility mechanism, but our hypothesis is that it has a general function in the transport of endocytic cargo rather than a specific function in self-incompatibility. NaPCCP represents a bifunctional protein with both phosphatidylinositol 3-phosphate- and arabinogalactan protein-binding domains. Therefore, it could function in the transport of pistil ECM proteins in the pollen tube endomembrane system.
منابع مشابه
Tomato Pistil Factor STIG1 Promotes in Vivo Pollen Tube Growth by Binding to Phosphatidylinositol 3-Phosphate and the Extracellular Domain of the Pollen Receptor Kinase LePRK2.
The speed of pollen tube growth is a major determinant of reproductive success in flowering plants. Tomato (Solanum lycopersicum) STIGMA-SPECIFIC PROTEIN1 (STIG1), a small Cys-rich protein from the pistil, was previously identified as a binding partner of the pollen receptor kinase LePRK2 and shown to promote pollen tube growth in vitro. However, the in vivo function of STIG1 and the underlying...
متن کاملA floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth
Pollen tubes elongate directionally in the extracellular matrix of pistil tissues to transport the male gametes from the apically located stigma to the basally located ovary for fertilization. The molecular mechanisms underlying directional pollen tube growth in the pistil are poorly understood. We have purified a glycoprotein, TTS, from tobacco stylar transmitting tissue, which supports pollen...
متن کاملArabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction.
Some of the most important changes that occur in plants during sexual reproduction involve the transition from a sporophytic to a gametophytic type of development. In this paper, these changes were evaluated for Arabidopsis thaliana. The results obtained clearly show differences in the pattern of distribution of specific arabinogalactan protein (AGP) sugar epitopes, during anther and ovule deve...
متن کاملSIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility.
In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection ...
متن کاملClass III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins.
Class III pistil-specific extensin-like proteins (PELPIII) are specifically localized in the intercellular matrix of tobacco (Nicotiana tabacum) styles. After pollination the majority of PELPIII are translocated into the callosic layer and the callose plugs of the pollen tubes, which could suggest a function of PELPIII in pollen tube growth. PELPIII may represent one of the chemical and/or phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 149 2 شماره
صفحات -
تاریخ انتشار 2009